解三角形最值总结

编辑:工作总结与写作发表日期:浏览:0

热门搜索 解三角形  解三角形的总结 







从图中我们能看到,第(1)问已经解决,用到了正弦定理和余弦定理.

如何求面积的最大值呢?

1 选择面积公式:从条件出发

从面积公式出发,因为已知角C,所以我们选择下面这个公式求解.





求面积的最大值,就是要求ab的最大值.

在高中阶段,求最值的方法主要有两个:一是函数法,二是基本不等式法.

在平时解题中,我们可以尝试一题多解,然后总结哪类解法适合哪类题型.

2 法1:函数法



所谓函数法,就是要把目标值表示为某个变量的函数,然后求这个函数的最值或值域.

选择哪个变量为自变量呢?

先分析已知条件:已知一个角,外接圆半径,则这个角的对边也是可求的.





受以上思路的启发,a,b边也能用含有角A或者角B的式子来表示.A角和B角是相互制约的(和为定值),且无特殊性,我们任意选择其中一个作为自变量即可.





3 函数法的两个关键:定义域和解析式

下面要考虑两个问题:

既然选择A为自变量,那么定义域是什么? 把ab表示为A的函数,这个三角函数化简的方向是什么? 先看定义域.





注意看清楚题目的要求.比如有的题目要求三角形为锐角三角形,则对角的约束条件要加强一些.

再说化简方向.

中学阶段,三角函数的化简方向主要有两种:





本题根据解析式特点,应该属于第(1)种情况.





然后结合定义域,求函数的最大值.



4 法2:基本不等式法

如果我们把ab整体考虑的话,可以试试余弦定理.



为求得ab的最值,需要把平方项进行转化,自然联想到基本不等式.

这种解法貌似比方法1要简便的多.

5 法3:几何法

分析本题条件,我们知道:c边长是确定的,角C是确定的,三角形外接圆的半径是确定的.

我们把三角形的外接圆画出来.



这样一个事实清晰地呈现出来:AB是一条定长的弦,劣弧AB所对的圆周角为60度,点C在优弧ACB上运动.

要使得三角形面积最大,就要使AB边的高线最长.

显然,当C点运动到高线通过圆心时,高线最长.





此时CA=CB,又角C为60度,所以三角形ABC为等边三角形.即当三角形为等边三角形时面积最大.



6 再总结:优中选优

小结:



1.函数法是处理最值问题的通法,最容易想到,但是运算量略大; 2.基本不等式法适合处理面积问题,又快又好; 3.几何法把代数和几何联系起来,不容易想到,可以开阔眼界.



如果把所求问题改为求三角形ABC周长的最大值,大家觉得哪种方法最好呢?

聪明的你,不妨动笔一试.

转载请注明,原文链接:https://www.8w4.cn/152894.html
标签: 解三角形  解三角形的总结 
百度搜索: 解三角形  解三角形的总结 
标题:解三角形最值总结
上一篇:
下一篇:

班组安全标准化班组工作总结

高速公路养护维修工程施工总结.doc

园长考核述职报告

两学一做心得体会

2020黑龙江省考申论备考指导:公文写作工作方案如何写